Multi-wavelength observation of cosmic-ray air-showers with CODALEMA/EXTASIS

Antony Escudie¹

D. Charrier 1,2 , R. Dallier 1,2 , D. García-Fernández 1 , L. Martin 1,2 and B. Revenu 1,2 \cdot

¹ SUBATECH, Institut Mines-Telecom Atlantique – CNRS/IN2P3 – Université de Nantes, Nantes, France ² Unité Scientifique de Nancay, Observatoire de Paris, CNRS, PSL, UO/OSUC, Nançay, France

August 23, 2018

TeVPA2018

Radio-detection of cosmic-rays

- A primary CR arrives in the atmosphere, and creates an extensive air shower (EAS)
- Charged particles (e⁺/e⁻) in the EAS create electric field (geomagnetic + negative charge excess mechanisms)

Radio-detection of cosmic-rays

Radio-detection of cosmic-rays

- Arrival direction (θ, ϕ) , core position, composition (X_{max}) , energy
- Different frequencies probe different properties of the shower

The experimental site - Nançay Observatory

The experimental site - Nançay Observatory win a 1600 m [1-10] MHz Externally triggered Externally triggered Self-triggered 20-200] MHz

Antony Escudie

Multi-wavelength observation of cosmic-ray air-showers with CODALEMA/EXTASIS - TeVPA2018

CODALEMA results

[20 - 200] MHz

CODALEMA results

[20 - 200] MHz

Antony Escudie

Progress in simulation - SELFAS3

- Classically, working under "far-field" assumption: SELFAS2
 , ZHAireS
 or COREAS
- Low frequency (<10 MHz) radio emission of EAS needs a new treatment including near-field effects (d~ λ)
- At 1 MHz, and R =100 m: $\frac{2\pi f}{c}$ R ~ 2 \Rightarrow Near field!

$$\mathbf{E}(\mathbf{x},t) = \frac{1}{4\pi\epsilon} \int d^3 \mathbf{x}' \left(\left[\frac{\rho(\mathbf{x}',t_{\rm ret})\mathbf{r}}{R^2(1-n\beta\cdot\mathbf{r})} \right]_{\rm ret} + \frac{n}{c} \frac{\partial}{\partial t} \left[\frac{\rho(\mathbf{x}',t_{\rm ret})\mathbf{r}}{R(1-n\beta\cdot\mathbf{r})} \right] - \frac{n^2}{c^2} \frac{\partial}{\partial t} \left[\frac{\mathbf{J}(\mathbf{x}',t_{\rm ret})}{R(1-n\beta\cdot\mathbf{r})} \right]_{\rm ret} \right)$$

Charge must be conserved: D. García-Fernández *et al.*, Phys. Rev. D 97, 103010, 2018, implemented since 2018

Charge density ρ , refractive index n \Rightarrow atmosphere description $\rho(z)$ (g · cm⁻³), n(z)

Upgrade of SELFAS with a state-of-the-art treatment of the atmosphere: F. Gaté *et al.*, Astroparticle Physics, 98:38 – 51, 2018

- USstandard: $\Delta X_{max} = 34.1 \text{ g} \cdot \text{cm}^{-2}$, $\sigma_{X_{max}} = 8.9 \text{ g} \cdot \text{cm}^{-2}$
- GDAS: $\Delta X_{max} = 0.1 \text{ g} \cdot \text{cm}^{-2}$, $\sigma_{X_{max}} = 2.4 \text{ g} \cdot \text{cm}^{-2}$

Estimating the shower parameters

• Core position, composition (X_{max}) and energy reconstructed trough MC simulations

Estimating the shower parameters

From Lilian Martin, ICRC2017

Importance of the [120 – 200] MHz region

Inclined event ($\theta = 55^{\circ}$)

Work in progress

Radio-reconstruction of inclined event in [30 - 80] MHz difficult

Radio-reconstruction much better including the HF band: $\chi^2_{[30-200]} = \chi^2_{[30-80]}/3$

Continuity in the spectra, their content is precious \Rightarrow only CODALEMA can do that!

Antony Escudie

Low-frequency counterpart in the radio signal

Simulation of vertical proton at 10¹⁷ eV, signal observed in the vertical polarization

Low-frequency counterpart in the radio signal

Simulation of vertical proton at 10¹⁷ eV, signal observed in the vertical polarization

The sudden death signal

SDP-total amplitude [uV/m]

Detection range

Simulations (V \cdot m $^{-1})$ show a wider 2D profile at low frequencies

[30-80] MHz

[1-5] MHz

UNA

Illustrative example of LF detection

EXTASIS – [1 – 10] MHz Re

Results

WINN

Illustrative example of LF detection

Summary at LF

- LF counterpart of shower development detected
- Larger detection range, weaker signal
- Sudden death signal still not seen ⇒ Auger
- Strong correlation with atmospheric electric field
- LF signal seems not very promising (very few events, low efficiency): 20 LF events seen since March 2017

Illustrative example of LF detection

- CODALEMA/EXTASIS: very wide [1-10] + [20 200] MHz, routinely multi-wavelength observation of cosmic-ray air-showers in 10¹⁶ – 10¹⁸ eV, self-triggered stations in [20 – 200] MHz
- Instrument and simulations very well mastered, strong agreement

- Estimation of shower parameters using the radio signals (θ , ϕ , (X_{core}, Y_{core}), X_{max}, Energy) in [20 200] MHz, using both polarizations independently \Rightarrow CR composition from CODALEMA upcoming
- Low-frequency signal seems not very promising
- Difficult to extract parameters for inclined showers ⇒ use of the HF counterpart

CODALEMA/EXTASIS are smart, powerful instruments in a unique environment

Thank you for listening!

Geomagnetic emission mechanism:

- Earth magnetic field, $\overrightarrow{F} = \overrightarrow{v} \times \overrightarrow{B}$
- Resulting current perpendicular to the shower axis ⇒ time variation ⇒ pulses of electromagnetic radiation
- Polarized along $\overrightarrow{\mathrm{v}}\times\overrightarrow{\mathrm{B}}$

Charge excess emission mechanism:

- Negative charge excess ≈ 10 20 % ⇒ medium ionized by the air shower particles
- Linear polarization with electric field vectors oriented radially
- Time-varying charge excess ⇒ pulses of electromagnetic radiation

 \Rightarrow Sum of the two contributions: interferences

Hardware

- → Butterfly antenna
- \rightarrow Modified LONAMOS LNA
- \rightarrow Externally triggered by SC
- \rightarrow 9 m height
- → Frequency band [1 10] MHz

Before:

$$\chi^{2} = \frac{1}{N_{dof} - 3} \sum_{ant} \left(\frac{(A_{ant} - \alpha \mathscr{F}(x_{ant} - x_{core}, y_{ant} - y_{core}))^{2}}{\sigma_{ant}^{2}} \right)$$

Now:

$$\chi^{2} = \frac{1}{N_{dof} - 3} \sum_{ant} \left(\frac{\left(A_{ant}^{EW} - \alpha \mathscr{F}^{EW}(x_{ant} - x_{core}, y_{ant} - y_{core})\right)^{2}}{\sigma_{ant}^{EW^{2}}} + \frac{\left(A_{ant}^{NS} - \alpha \mathscr{F}^{NS}(x_{ant} - x_{core}, y_{ant} - y_{core})\right)^{2}}{\sigma_{ant}^{NS^{2}}} \right)$$

- Hybrid reconstruction: use of different detectors of CODALEMA/EXTASIS
- Multi-wavelength reconstruction: use of [20 80] MHz and [120 200] MHz bands
- Increasing the dof: take into account the information of both polarizations

The sudden death signal

Number of particles at ground level

Atmospheric noise

- Dominated by atmospheric and man-made noises (not the Galactic one)
- Atmospheric noise lower during day than night \Rightarrow duty cycle \leq 50 %
- Analysis band: [1.7 3.7] MHz

Atmospheric noise

Role of the atmospheric electric field

From B. Revenu

For E >1 EeV: 3.6×10^{-2} km⁻² · d⁻¹ · sr⁻¹ \Rightarrow ~ 250 showers over 3 years

- This phenomenon occurs during the shower development in the atmosphere ⇒ radio-emission is amplified
- Signal pattern on the ground should present a ring of amplified emission

Not to scale!

Is the sensitivity preserved ?

Spectrum and amplitude variations are preserved !