COSMIC RAY RADIO DETECTION: LATEST NEWS FROM CODALEMA

Richard Dallier

Subatech, CNRS/IN2P3 - Ecole des Mines de Nantes - Université de Nantes

This work has been financially supported by the XPNDE

REMAINING CHALLENGES

Spectrum

Ankle: galactic/extragal. transition? $\mathrm{e}^{+} / \mathrm{e}^{-}$pair production depletion? High energy cut off: GZK ? Source acceleration limit?
Source horizon?

Needs

Higher statistics at high energy Better energy resolution Coverage of North hemisphere Measure of spectral index \& composition

Composition

Heavier at high energy: seen by Auger, but not HiRes nor TA!
$" \rightarrow$ Difference North/South sky ? Statistics ? Analysis method?

Sources

Auger : E > $55 \mathrm{EeV} \mathrm{m} \rightarrow$ Anisotropy HiRes/TA don't confirm !

$$
\text { AGN (Auger : 3 } \sigma \text {) ? Cen-A ? }
$$

WHAT ANSWERS?

The solution would be a new giant instrument at ground

Q Higher statistics at high energies: detection surface $10 \times$ SAuger $\Rightarrow 30000 \mathrm{~km}^{2}$!
Q Energy resolution, spectral index and composition: more accurate measurements \Rightarrow Multi-hybrid detection ?
Q Timeline ≈ 15 years?

Radio detection?

First interaction altitude and charge production maximum depend on GR mas

$$
F Y \propto f(t)
$$

$P Y \propto f\left(t_{0}\right.$
but a triggered
Amemeanery observation ("snapshots" of few $\mu \mathrm{s}$)

CODALEMA (NANÇAY, SINCE 2003)

SOME BIG EVENTS

RADIO RESULTS - I

Geomagnetic contribution
$E \propto v^{\wedge} B$, polarization $\rightarrow f(\theta, \varphi)$

RADIO RESULTS - 2
Charge excess contribution
$2^{\text {nd }}$ order, polarization \rightarrow observer Radio core vs particle core shift

RADIO RESULTS - 3
Lateral field profile and energy correlation E0, d0, (X0,Y0) - E0 \& Ep

RADIO RESULTS - 3

Semaine SF2A - 5 Juin 2014 - Paris

RADIO PROSPECTS - I

Tamiturd rintinets

Different EAS features :

energy, inclination, mass (Xmax)
Or observation conditions :
impact parameter, orientation, under/above induces different pulse shapes:

Amplitude duration, bi-polarity
Filtering the signals kills the differences Measuring the spectrum over a wide-band preserves the sensitivity

I7-45 Uiter Fimpd tranvients

Spectral indexes and frequency contents are different

PROSPECTS - I

Extension of frequency range Toward high frequencies

PROSPECTS - I

Extension of frequency range Toward high frequencies

PROSPECTS - 2

Sudden death of the shower

2 : charges are strongly decelerated when arriving at ground, and gives "sudden death" signal. Time difference between 2 antennas gives shower's location. The signal is produced at low frequencies (< 10 MHz).

15

CODALEMA/NENUFAR BEYOND 2015

OUTLOOK

Q Ultra-High Energy Cosmic Rays

\checkmark Involves astrophysics \& particle physics
\checkmark Community $" \rightarrow$ needs for a new instrument
\checkmark Augmentation of statistics, discrimination of composition, energy resolution
Q Radio detection of cosmic rays
\checkmark Key method for the future ?

- French competence - great opportunity !
- CODALEMA and Nançay (includes LOFAR and LSS) as a development base
\checkmark AERA : multi-hybrid on Auger - pertinence of the method, R\&D difficult on site
\checkmark Still to find the composition-related radio observable
\checkmark A new way to observe very fast transients: potential new window in radioastronomy?
Q Links with LOFAR and SKA
\checkmark High sensor (antenna) density: very fine shower profile
\checkmark Ability to discriminate showers on radio signal only (aim of compact array @ CODALEMA)
\checkmark CODALEMA \& LSS/NenuFAR: proposal INSU 2014

