

Radio-detection of UHECR by the CODALEMA experiment

Olivier RAVEL

SUBATECH, Nantes, France

and the CODALEMA collaboration

Mérida, 07/07/07

Olivier RAVEL

CODALEMA setup

80 m

Decametric

CODALEMA Collaboration

Scintillator array (trigger) **Trigger** : 5 central scintillators in coincidence

89.5 m

Internal air showers : Energy Known 30 % of uncertainty

Dipole

EW polarization of the Electric field

CODALEMA @ Nançay

6.2 m Sc

612 m

Mérida, 07/07/07

Olivier RAVEL

SUBATECH NANTES

Dipole antenna

Statistics

since December 2006, new setup

Effective time : 170 days

Multiplicity >= 3 (3 antennas tagged at least): 613 events

Multiplicity >= 3 + time and angular coincidence between both arrays

141 cosmic ray showers radio-detected

Counting rate : 0.8 events/day

43 showers with energy known (Internal)

Mérida, 07/07/07

Olivier RAVEL

CODALEMA Collaboration

Energy distribution

Mérida, 07/07/07

Olivier RAVEL

CODALEMA radio-detection efficiency

(with one Electric field polarization measured)

Mérida, 07/07/07

Olivier RAVEL

SUBATECH NANTES

CODALEMA

Collaboration

Scintillator distributions (internal showers)

Shower arrival directions calculated with the scintillator data

Energy threshold for scintillator array ~ 10¹⁵ eV

Mérida, 07/07/07

Olivier RAVEL

Shower arrival directions

Mérida, 07/07/07

Olivier RAVEL

SUBATECH NANTES

CODALEMA

CODALEMA Collaboration

Geomagnetic effect

SUBATECH NANTES

Mérida, 07/07/07

Olivier RAVEL

Geomagnetic effect / Energy

Energy known only for « internal showers » North Log E > 17.5 (CIC method, precision 30 %) 17.3 < Log E < 17.5 330 30 17.1 < Log E < 17.3 16.9 < Log E < 17.1 \bigcirc 43 internal showers 300 60 Air showers detected from a de la the South are 100 more energetic 60 East 270 West 90 240 120 210 150 Geomagnetic Field 180 @ Nançay South $\theta = 27^{\circ}, \phi = 180^{\circ}$

Mérida, 07/07/07

Olivier RAVEL

SUBATECH NANTES

CODALEMA

Geomagnetic effect / Energy

CODALEMA Collaboration

Energy known only for « internal showers » (CIC method, precision 30 %)

Mérida, 07/07/07

Olivier RAVEL

Electric Field Topology

Run=789 Evt=1169 Theta=39.2° Phi=32.1° 400 x0 = 96.8 mExponential dependence 300 y0 = 15.5 m $\mathcal{E} = \mathcal{E}_{o} \exp(-d/d_{o})$ $E = 2 \times 10^{17} eV$ 200 EO6 EO5 100 30 $\mathcal{E}_{0} = 25 \,\mu \text{V/m/MHz}$ NS6 N\$5 080 493 NS2/ NS-0 Electric field (µv/m/MHz) EO4 25 -100 EO3 NS3 NS4 -200 20 -300 Theta = 39.2[°] (Ox,Oy) NS2 NS5 Phi = 32.1^o -400 15 -400 -200 0 200 400 EO4 EO5 E=E0*exp(-d/d0) 10 E06 NS7 NS^{EIO3} E0 = 2.51E+01 μV/m/MHz EO2 d0 = 157.4 m EO1 EO7 Khi2/ddl = 2.86 0 0 100 200 300 400 500 600 Axis distance (meter)

Mérida, 07/07/07

Olivier RAVEL

SUBATECH NANTES

CODALEMA

Electric Field Topology

Run=789 Evt=446 Theta=43.7° Phi=277.8° 400 x0 = -1.9 mExponential dependence 300 y0 = -14.3 mEO7 100 $\mathcal{E} = \mathcal{E}_{o} \exp(-d/d_{o})$ $E = 8 \times 10^{17} eV$ 200 EQ6 100 EQ5 = 03 **73 μV/m/MHz** Electric field (µv/m/MHz) NS6 NS5 REALISE NS7 NS2 NS1 80 ۰**n** 104 -100 EO3 NS6 -200 NS5 EO4 NS4 60 EQ7 -300 Theta = 43.7⁰ (Ox,Oy) EOT More statistic Phi = 277.8⁰ EO5 -400 -200 200 400 -400 0. 40 needed EQ_{4S3} [∙] **0,EO6** to correlate $E=E0^{\circ}exp(-d/d0)$ E0 = 7.28E+01 µV/m/MHz **EO2** \mathcal{E}_{o} and Energy 20 NS2 d0 = 133.1 m EO1 Khi2/ddl = 37.26 NS1 -E07 0 100 200 300 400 500 600 Axis distance (meter)

Mérida, 07/07/07

Olivier RAVEL

SUBATECH NANTES

CODALEMA

Electric Field Topology Giant event" (Energy above 10¹⁸ eV)

Mérida, 07/07/07

Olivier RAVEL

SUBATECH NANTES

CODALEMA

CONCLUSION

☆ CODALEMA radio detection efficiency increases with energy

Evidence for a Geomagnetic effect radio-detection deficit close to the Geomagnetic field direction effect on the radio-detection efficiency around 10¹⁷eV constraint on the emission process Detection of all polarization could help

At the present time, we do not see clear correlation between the cosmic ray Energy and the measured electric field

Larger autonomous antennas array (in 2008 @ Nançay)

Mérida, 07/07/07

Olivier RAVEL

CODALEMA @ ICRC 2007 see also 3 posters

Radiodetection of astronomical phenomena in the cosmic ray dedicated CODALEMA experiment Jacob Lamblin

Design and performance of a fully autonomous antenna for radio detection of extensive air showers Benoît Revenu

Radio detection of High-Energy cosmic rays at the Pierre Auger Observatory A Van Den Berg

Mérida, 07/07/07

Olivier RAVEL