Latest results of the CODALEMA experiment: cosmic rays radio-detection in a self-trigger mode

ECRS 2012 - Moscow

By Diego Torres Machado Astroparticles group at SUBATECH, Nantes

The purpose

From air showers parameters:

- Arrival direction of events & angular resolution of the array
- Energy estimator: correlation between E and primary cosmic ray energy
- Composition at 10¹⁶ 10¹⁸eV (signal contains information about the entire shower development)

Self-sufficiency of the radio detection & mastering a large radio array

CODALEMA 2

Dipole antenna

Particle detector

- Working since 2006
- 21 antennas (EW) + 3 antennas (NS)
- 17 scintillators
- Covered surface: 0.25 km² \rightarrow 2nd knee
- Sensitivity to the galactic background radiation

CODALEMA 2: emission mechanisms

First order: geomagnetic effect

- Time varying transverse current
- Signal strength $\propto \textbf{v} \times \textbf{B}$
- Purely linear polarization
- Electric field aligned with $\mathbf{v}\times\mathbf{B}$
- N-S asymmetry in arrival directions

Ardouin D et al 2009 Astropart. Phys **31** 192-200

CODALEMA 2: emission mechanisms

First order: geomagnetic effect

- Time varying transverse current
- Signal strength $\propto \textbf{v} \times \textbf{B}$
- Purely linear polarization
- Electric field aligned with $\mathbf{v}\times\mathbf{B}$
- → N-S asymmetry in arrival directions

Second order: Charge excess

- Time varying charge excess
- Purely linear polarization
- Electric field radially oriented, varies with observer location relative to core
 - Systematic shift between particle and radio cores

CODALEMA 3: the autonomous antenna array

The butterfly antenna

✓ Area: $0.5 \text{km}^2 \rightarrow \text{more statistics in } 10^{16} - 10^{18} \text{eV}$ energy range

- EW & NS horizontal polarizations
- Better understanding of lateral profiles
- R&D for future giant & hybrid detectors (AERA, Auger next...)

Antenna deployed at CODALEMA & RAuger

BUT: sensitivity to the radio frequency interferences

Spherical reconstruction of the wave front (offline)

- Sensitivity to the initial conditions
- High accuracy required about antenna's position and timing of events

Spherical reconstruction of the wave front (offline)

- Sensitivity to the initial conditions
- High accuracy required about antenna's position and timing of events

• Radio environment of each antenna

Has been implemented successfully!

Spherical reconstruction of the wave front (offline)

- Sensitivity to the initial conditions
- High accuracy required about antenna's position and timing of events

Rejection of periodic events (online)

Radio environment of each
antenna

Has been implemented successfully!

Wave shape analysis (online)

• Expected transient coming from an EAS: < 100ns

A. Bellétoile: Auger GAP-2011-47

Spherical reconstruction of the wave front (offline)

- Sensitivity to the initial conditions
- High accuracy required about antenna's position and timing of events

Rejection of periodic events (online)

Radio environment of each
antenna

Has been implemented successfully!

Wave shape analysis (online)

 Expected transient coming from an EAS: < 100ns

A. Bellétoile: Auger GAP-2011-47

- Several noise sources located
- 50-80% of rejection for periodic events
- Up to 90% of rejection using wave shape analysis in time domain

Butterfly antenna provides both EW and NS polarizations of the electric field $\hfill \square$

Butterfly antenna provides both EW and NS polarizations of the electric field

Possibility to estimate azimuthal angles using a

single antenna

(AERA GAP-note 2012-042 B. Revenu)

Outlook

- Main mechanisms of radio emission by EAS identified
- Control of the anthropic sources
- Deployment of CODALEMA 3 (34 + 26 standalone stations)
- R&D for self-triggered system, signal range and detection efficiency
- Polarization provides informations about emission mechanisms

Additional slides

Lateral profile of the electric field: big event coming from the South

Energy estimation

$$\varepsilon(\mu V/m/MHz) = cte.(\frac{E_p}{10^{17}}).sin\alpha.cos\theta.e^{-\frac{d}{d_0(\mu,\theta)}}$$

19

How detect them?

	Observable	Advantages	Drawbacks
Water Cherenkov Detectors Scintillators	Particle density at the ground level ↓ Lateral spread	Duty cycle~100% Direct measure of the particle density	Model-dependent for energy computation
Air Fluorescence Detectors	Nitrogen fluorescence in the atmosphere ↓ Longitudinal spread	3D shower development Detection at several km	Low duty cycle
Radio-Detection	Electric field ↓ Lateral spread of the electric field + Longitudinal spread?	High duty cycle Low cost Angular acceptance	Sensitivity to the Radio Frequency Interferences

Spectrum at ultra high energy

Spherical reconstruction of the background sources

$$\chi^2 = \sum_{i=1}^{m} ((x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2 - c^2 (t_i - t_0)^2)^2$$

Spherical reconstruction of the background sources

La Coudre

Le Crocy

D29E

D29

D29

D29

D29

D29

Standalone array resolution

