Reading Development High Energy Cosmic Ray Air Showers

Ashartraviaw

Richard Dallier - SUBATECH, Nantes (CODALEMA and Radio@Auger collaborations)

XXth RENCONTRES DE BLOIS 18th - 23rd May 2008 "Challenges in Particle Astrophysics"

Château de Blois (France)

Historical review

- 1962Theoretical prediction Askar'yan effect1964-65First experiment T.C. Weekes
- Mid 70's Abandoned (difficulties of interpretation and detection + success of other techniques)
- End 90'sRe-investigated in dense media (ice, salt) \Rightarrow neutrinos1999Proof of principle on accelerator (sand, D. Saltzberg,)
- 2000 Experience on CASA-MIA (K. Green et al., 2003, N.I.M. A, 498) Try on EAS-Top (Italy) \Rightarrow no convincing results
- 2002 LOPES Experience on KASCADE (FZK) CODALEMA Experience @ Nançay Radio Observatory
- 2005-2007 New theoretical approaches: microscopic models based on MC calculations (Huege & Falcke), macroscopic models based on semianalytical formulae (Scholten, Werner & Rusidy)

2006 Prospectives on AUGER-South

General properties

CODALEMA

Radio detection:

- Is a bolometric method (uses atmosphere as a calorimeter) \Rightarrow macroscopic properties of the shower
- Gives access to longitudinal development of the shower, at large distances
- Is sensitive to inclined showers \Rightarrow neutrinos ?
- Presents a high duty cycle, is cheap
- Is few technology and method dependent \Rightarrow robust

Two current and major experiments: LOPES and CODALEMA

CODALEMA @ Nançay

21 dipole antennas in
EW polarization
3 dipole antennas in
NS polarization

13 particle detectors (trigger)

Data Acquisition: - 12 bits ADC

- Sampling: 1 GHz

Antennas: "+" of 600 m x 500 m Scintillators: "□" of 350 m x 350 m

LOPES: LOFAR PrototypE Station

- 10 antenna prototype at KASCADE (all 10 antennas running)
- triggered by large event (KASCADE) trigger (10 out of 16 array clusters)
- offline correlation of KASCADE & LOPES (not integrated yet into the KASCADE DAQ)
- KASCADE can provide starting points for LOPES air shower reconstruction
 - core position of the air shower
 - direction of the air shower
 - size of the air shower
- Now: 30 antennas have been installed and take data
- Software and data archive on multi-TB raid system
- >1 Million events in database

Problem: RFI noise

Different sites, different antennas, different methods

Particle detector triggers on a CR event

Radio signal (waveform) is recorded on antennas

Offline processing to find if CR radio signal has been detected

Filtering wide band + simple voltage threshold ⇒ radio shower signal independent from particle detector, on each antenna for one event

CODALEMA

"Transient method" (particle physics) Study of V(t) RFI suppression + time scaling using particle detector information (beam forming) + sum of amplitudes of all antennas for one event

"Stationary method" (astronomy) Study of V(v) 9

CODALEMA waveform processing principle

Radio transmitters
✓ Mask the transient
Filtered waveform
✓ Keeps transient nature

Applying a threshold

✓ Triggering on amplitude
✓ Datation of the pulse

CODALEMA illustrative example

Wide bandwidth recording (1-250 MHz): transients are hidden by transmitters

CODALEMA illustrative example

Wide bandwidth recording (1-250 MHz): transients are hidden by transmitters

Narrow band filtering (here 23-83 MHz)

Radio signal gives independent parameters: Direction by triangulation, core position, shower field profile (sampled antenna by antenna)...

Correlation with particles (time, arrival direction)

LOPES waveform processing principle

LOPES illustrative example

Beam forming in each sky direction ⇒ imaging of shower pulse Correlation/interferometry ("astronomical" method) for triangulation

LOPES^{STAR} illustrative example

Real shower event, measured with LOPES^{STAR} at FZK

 \Rightarrow "CODALEMA like" data (antenna by antenna)

Merlin Manewald, IPE, FZK

Suppressed in software: Suppressed in hardware: -30 20 17

Nantes, Jan. 08

Main results on HECR radio signal properties: A comparative and complementary view

What we have to question:

EAS Energy threshold
 GeoMagnetic field dependence
 EAS electric field profile
 EAS electric field extent
 Shower energy dependence

1 - Radio detection energy threshold

- Threshold ~ 4 to 6 10^{16} eV
- Needs two polarizations (EW and NS) !
- Full efficiency > 10¹⁸ eV ?
- Still a lack in efficiency \Rightarrow sky coverage ?

CODALEMA simulations: full efficiency with only EW polar is indeed reached (Riviere et al, 2008, tbp)

2 - GeoMagnetic field dependence

4 - EAS electric field extent

Characteristic extent ~ 200 m \geq 5.10¹⁶ eV

5 - Shower energy dependence

Why Radio @ Auger?

• Extension of energy range well above 10^{18} eV (threshold some 10^{17} eV \Rightarrow overlap with LOPES and CODALEMA energy ranges)

- Merging information from 3 independent detectors should help to precise shower characteristics and nature of the primary
- Access to very large areas (mandatory to gain statistics)
- The radio sky is very good in the pampa !

Sky background @ Auger, CLF

Prospective on Auger South

- Began in late 2006 (NL, D, F, USA, coord.: Ad van den Berg)
- Phase 1: test of different antennas and trigger concepts
- Phase 1 bis (current): setting two types of autonomous stations on the same site (BLS) for comparison purposes
- \Rightarrow Derive technical parameters (antenna, trigger, array driving...) with benefit of LOPES and CODALEMA experience
- Phase 2 (2009-20..): setting up a 20 km² array for "superhybrid" detection (SD, FD and radio)

Necessitates autonomous radio detectors Necessitates strong technical cooperation Necessitates continuous theoretical effort

Location: BLS (NL, D,

Pierre Auger Observatory

USA) Several antennas tested, triggered by plastic scintillators

Coincidence between radio signals and Auger events were found (same principle as CODALEMA and LOPES)

BLS: First results

autonomous stations based on CODALEMA experience

Self-triggered antennas: first events

First CR events ever detected independentely by a radio system!

22 coincident events with Auger since July 2007, 9 since February (stable)

Still need a particle detector to confirm the detection by exploring time coincidences between the two systems

New generation of autonomous radio stations is coming soon (2 design)

Triangulation on storms

Outlook

✓ Radiodetection of cosmic rays works and is roughly independent of the antenna and electronics, provided the adapted method is chosen \Rightarrow The physics is robust, the signal is firm

✓ Signal is driven mainly by geomagnetic effects (not necessarily geosynchrotron) ⇒ Theoretical work is still needed despite strong advances and good predictions

✓ Current results concern energies close to the threshold: analysis is difficult, interpretation may differ, but main tendencies are defined \Rightarrow Need to extend energy range

 ✓ Radio is very promising for detecting inclined air showers (neutrinos ?), transient radiodetection also foreseen on other sites (LOFAR in Europe, 21CMA in China...) ⇒ The method is spreading

 \Rightarrow A super hybrid detector covering a large area on Auger should help making strong progress on all those scopes

✓ **Byproduct:** fast transient radio detection method can open new windows also on purely astronomical fields (pulsars, Cerenkov observations of γ -ray from nearby sources...)