A dedicated antenna array for radio detection of Extended Air Showers

- A. Lecacheux⁽¹⁾, D. Charrier⁽²⁾,
- R. Dallier⁽²⁾, L.Denis⁽³⁾, L. Martin⁽²⁾
 - ⁽¹⁾ Observatoire de Paris
 - ⁽²⁾ SUBATECH
 - ⁽³⁾ Station de Radioastronomie de Nançay

((1)+ (2)+ (3) CODALEMA collaboration)

outline

- why a new antenna array ? motivations and rationale.
- operated since mid 2013 in "SD triggered mode" ~1000 radio events from 80000 SD triggers.
- prototype for an EAS self detecting radio system (in progress):

operation in <u>self detecting</u> mode

(continuous sky survey + on line recognition scheme)

Antenne LWA (thick V-shaped active dipolar antenna)

Realisation and modeling of LWA antennas (LWA aerial + "Ionamos" LNA)

Exceptional quality of the obtained antenna matching

ARENA 2014 - Annapolis - 2014/06/11

Response to galactic radio emission

Equivalent discrete signal amplitude (in time window Δt):

$$E_{\nu} = 0.098 \left(\frac{\nu_{MHz}}{20}\right)^{-0.28} \sqrt{\Delta t_{ns}} \qquad \mu V. \, m^{-1}. \, MHz^{-1}$$

EAS radio event amplitude spectrum

Compact Array implantation inside CODALEMA instrument in Nançay

Compact antenna array and SD detectors

The CODALEMA Compact Array instrument

- 10 antennas in dual linear horizontal polarisation, distributed over a square of 150m x 150m (24 to 146m spacing)
- two observing modes:
 - SD triggered:
 - + 20 channels, 6 μs snapshot
 - ADC 400 MHz, bandwidth: 10-200 MHz
 - self detecting mode (development in progress)
 - continuous sampling of (up to) 8 channels, in circular polarisation (linear output added in quadrature)
 - ADC 100 MHz, bandwidth: 50 MHz (2nd Nyquist band)
 - real-time software (using GPU 5 Tflops)

Search for coïncidences with SD events (time and direction)

impulsive RFI environment (in Nançay)

The sensitivity problem

an « easy » event

this one is much more difficult to detect ...

Antenna theory

Antennas in radio astronomy and telecom are most often described by **power** related quantities (gain & directivity, beam pattern, Stokes parameters, etc...)

They also can be described by (far) **field** related quantities, all of them being expressed in terms of **antenna effective height** (Sinclair, 1950)

$$\vec{h}(\vec{k}) = \frac{1}{I_0} \int \vec{j}(\vec{r}) e^{-i\vec{k}\vec{r}} d\vec{r}$$

where : $\begin{cases} \vec{j}(\vec{r}) \equiv \text{antenna current density on the antenna} \\ \vec{k} \equiv \text{wave vector} \\ I_0 \equiv \text{driving current} \end{cases}$

 \vec{h} is a constant real vector in the quasi-static frequency range (short dipole of length $L = 2 \|\vec{h}\|$) but, in general, is <u>complex</u> and depending on <u>both</u> frequency and direction (Macher, PhD, 2008).

Electric field orientation (i.e. polarisation)

The antenna can be modeled as (actually is !) a linear filter of which the impulse response is the antenna effective height:

$$V(t) = \left(\vec{h} * \vec{E}\right)(t) = \int \vec{h}(t - t') * \vec{E}(t')dt'$$

or, in frequency domain :

$$V(\omega) = \vec{h}(\omega)\vec{E}(\omega)$$

assuming identical antennas along EW and NS directions (i.e. same \vec{h} within a 90° rotation around vertical axis):

$$V_{EW} = h E \sin \alpha$$
$$V_{NS} = h E \cos \alpha$$
$$\alpha = \tan^{-1} V_{EW} / V_{NS}$$

ARENA 2014 - Annapolis - 2014/06/11

Electric field orientation

Measured vs. predicted polarisation for "charge separation" mech. $:\vec{E}_{\parallel} \parallel (\vec{v} \times \vec{B})_{\parallel}$

500

400

single antenna

measurements

Solving the sensitivity problem

Beamforming of N antennas :

individual waveforms : $\left\{x_{j}(t)\right\}_{j=1..N}$

synthesize :

where :

in Fourier domain :

$$\tau_j = \left(\vec{u} \cdot \vec{r}_j\right) / c$$

 $y(t) = \sum_{i=1}^{j=N} x_i \left(t - \tau_j \right)$

ain: $Y(\omega) = \sum_{j=1}^{j=N} X_j(\omega) e^{i\omega\tau_j}$

 \rightarrow SNR increased by a factor \sqrt{N}

this one is much more difficult to detect ...

time (ns.)

Possible self detection scheme:

- in order to avoid (natural and man made) transient noise: i.e. lightnings, electric/electronic devices, etc...
- continuous sampling (F_s =100 MHz, BW=50 MHz) of selected antenna output, stored in a ring buffer (F_s =100 MHz, BW=50 MHz)
- pre-conditioning:
 - Fourier transform each channel
 - additional band pass filtering as needed
 - synthesize circularly polarised channel (by using complex analytic representation of each pair of linear channel (software) or by using a wideband quadrature hybrid circuit (hardware).
 - compute signal envelop
- for each successive time-window corresponding to the array time aperture (500 ns.):
 - generate ~2000 beams in sky (~2° apart) via beamforming.
 - search for beam(s) containing signal above some intensity threshold
 - TBD: additional criteria (e.g. rise time, known RFI direction, etc...)
- feasibility?
 - 8 channels × 100 Msamples/sec. ~ 1 Gsamples/sec.
 - using CPU+GPU :
 - software presently developed on NVIDIA C1060, 0.6 Tflops
 - final version will use NVIDIA K20, 5 Tflops

2013-07-0812:56:11 (EW)

2013-07-0812:56:11 (NS)

