SE FAS2

Simulation of ELectric Field emitted by Air Shower

Vincent Marin *SUBATECH Nantes France*

ARENA 21/06/2012

- •Formalism, electric field
- •Field at shower scale
- 10¹⁷ eV
- Vertical event
- SELFAS2 at CODALEMA
- SELFAS2 at RAuger1
- Realistic air refractive index
- •Conclusion

Dedicated to radio emission in the MHz range

Create an autonomous code which doesn't launch any full shower simulation (CORSIKA, AIRES)

➡ Based on air shower universality

- → Using relevant universal distributions :
- -GIL Longitudinal profile Greisen, Iljina, Linsley in Proc. of 27th ICRC -Energy distribution
- -Vertical and horizontal momentum direction -lateral distribution AI

Lafebre et al AP, 31(3):243–254 2009

-Delay time (shower front thickness)

\rightarrow Generate only e⁺ and e⁻ of the shower front (3D)

Track each e^+/e^- along their trajectory to compute and sum up all individual field contribution at any observation point

q(t)**Individual charge with** SELFAS2 a finite life time •Concept $t_1 = \text{start point time}$ •Formalism, ŢŢ $t_2 = end point time$ electric field •Field at Charge density $\rho(x',t') = q[\theta(t'-t_1) - \theta(t'-t_2)]\delta^3(x'-x_0(t'))$ shower scale • 10¹⁷ eV Vertical event $J(x',t') = \rho(x',t')v(t')$ Current density • SELFAS2 at **CODALEMA** (Lorenz gauge) With Maxwell equations : • SELFAS2 at **RAuger1** $\boldsymbol{E}(\boldsymbol{x},t) = \frac{1}{4\pi\epsilon_0} \int d^3x' dt' \frac{1}{R} \left[-\boldsymbol{\nabla}' \rho - \frac{1}{c^2} \frac{\partial \boldsymbol{J}}{\partial t'} \right] \quad \delta \left\{ t' - \left(t - \frac{|\boldsymbol{x} - \boldsymbol{x}'|}{c} \right) \right\}$ • Realistic air refractive index Performing time and spatial integrations : •Conclusion $\boldsymbol{E}(\boldsymbol{x},t) = \frac{1}{4\pi\varepsilon_0} \left\{ \left[\frac{\boldsymbol{n}q(t_{\text{ret}})}{R^2(1-\boldsymbol{\beta}.\boldsymbol{n})} \right]_{\text{ret}} + \frac{1}{c} \frac{\partial}{\partial t} \left[\frac{\boldsymbol{n}q(t_{\text{ret}})}{R(1-\boldsymbol{\beta}.\boldsymbol{n})} \right]_{\text{ret}} - \frac{1}{c^2} \frac{\partial}{\partial t} \left[\frac{\boldsymbol{v}q(t_{\text{ret}})}{R(1-\boldsymbol{\beta}.\boldsymbol{n})} \right]_{\text{ret}} \right\}$ **In SELFAS2 previous version :**

Refractive index fixed to unity => No Cerenkov effects

SE/FAS2	At shower scale : summing up all contributions		
• $\boldsymbol{E}_{tot}(\boldsymbol{x},t) = rac{1}{4\pi\epsilon_0} \left\{ \left. $	$\sum_{i=1} \left[rac{oldsymbol{n}_{i} q_{i}(t_{ret})}{R_{i}^{2}(1-oldsymbol{eta}_{i}.oldsymbol{n}_{i})} ight]_{\mathrm{re}} +$	$rac{1}{c}rac{\partial}{\partial t}\sum_{i=1}\left[rac{oldsymbol{n}_{i}q_{i}(t_{ret})}{R_{i}(1-oldsymbol{eta}_{i}.oldsymbol{n}_{i})} ight]$	$\left. \left \frac{1}{c^2} \frac{\partial}{\partial t} \sum_{i=1} \left[\frac{oldsymbol{v}_i q_i(t_{ret})}{R_i (1 - oldsymbol{eta}_i \cdot oldsymbol{n}_i)} ight]_{ m ret} ight\}$
 Formansm, electric field Field at shower scale 	global Coulombian	Summation of all individual static contributions.	\approx two orders of magnitude smaller
 10¹⁷ eV Vertical event SELFAS2 at CODALEMA 	Charge excess variation	Due to the e ⁻ in excess $Q(t) = \alpha N(t)$	
 SELFAS2 at RAuger1 Realistic air refractive index 	Transverse current variation	Systematic opposite drift of e ⁻ and e ⁺ in th earth magnetic field	ene.
•Conclusion			e -
	Dominant, excep parallel to the g	e^+ $i(t)=\alpha N(t)$	
	Pierre Auger Ob	servatory - Malargue Cam	pus 16

SE/FAS2 •Concept •Formalism, electric field •Field at shower scale • 10¹⁷ eV Vertical event • SELFAS2 at **CODALEMA** • SELFAS2 at **RAuger1** • Realistic air refractive index •Conclusion

Comparison with data

SELFAS2 (with air refractive index = 1)

•Conclusion

<u>First SELFAS2 cross check with data :</u> The arrival direction dependence

Density skymap of detected events in EW polarization for CODALEMA site

More than 1 thousand events simulated around 10¹⁷ eV with SELFAS2, for various arrival directions

•Concept

SE

•Formalism, electric field

FAS2

•Field at shower scale

• 10¹⁷ eV Vertical event

SELFAS2 at CODALEMA
SELFAS2 at

RAuger1

• Realistic air refractive index

•Conclusion

<u>Third SELFAS2 cross check with data :</u> Direct comparison with a three-fold RAuger1 event <u>deconvoluted from antenna response</u> <u>Filtered-band 40-80 MHz</u>

Scaling factor of 3??

Dependence to first interaction length

➡Number of particles predicted by simulation underestimated

➡Air refractive index not included in SELFAS2...(but can't explain a factor of 3 in 40-80MHz region as we will see)

•Concept

SE

•Formalism, electric field

FAS2

•Field at shower scale

• 10¹⁷ eV Vertical event

SELFAS2 at CODALEMA
SELFAS2 at

RAuger1

• Realistic air refractive index

•Conclusion

<u>Third SELFAS2 cross check with data :</u> Direct comparison with a three-fold RAuger1 event <u>deconvoluted from antenna response</u> <u>Filtered-band 40-80 MHz</u>

Scaling factor of 3??

Dependence to first interaction length

➡Number of particles predicted by simulation underestimated

➡Air refractive index not included in SELFAS2...(but can't explain a factor of 3 in 40-80MHz region as we will see)

•Concept

SE

•Formalism, electric field

FAS2

•Field at shower scale

• 10¹⁷ eV Vertical event

SELFAS2 at CODALEMA
SELFAS2 at

RAuger1

• Realistic air refractive index

•Conclusion

<u>Third SELFAS2 cross check with data :</u> Direct comparison with a three-fold RAuger1 event <u>deconvoluted from antenna response</u> <u>Filtered-band 40-80 MHz</u>

Scaling factor of 3??

Dependence to first interaction length

➡Number of particles predicted by simulation underestimated

➡Air refractive index not included in SELFAS2...(but can't explain a factor of 3 in 40-80MHz region as we will see)

SE/FAS2 •Concept •Formalism, electric field •Field at shower scale • 10¹⁷ eV Vertical event • SELFAS2 at **CODALEMA** • SELFAS2 at **RAuger1**

• Realistic air refractive index

•Conclusion

SELFAS2 with realistic air refractive index n=n(h)

Realistic air refractive index can not explain by itself the scaling factor of 3 (only 1.5) observed between data and simulation in the 40-80 MHz

n=n(h)

500 1000

60

80

100

SE FAS2 •Concept •Formalism, electric field •Field at shower scale • 10¹⁷ eV **Vertical event** • SELFAS2 at **CODALEMA** • SELFAS2 at **RAuger1** • Realistic air refractive index

•Conclusion

SELFAS2 + realistic air refractive index

- •Concept
- •Formalism, electric field
- •Field at shower scale
- 10¹⁷ eV
- Vertical event
- SELFAS2 at CODALEMA
- SELFAS2 at RAuger1
- Realistic air refractive index

•Conclusion

- ➡ SELFAS is an autonomous Monte-Carlo simulation code based on universality
- ➡ SELFAS doesn't need EAS generator. The geometry only is needed.
- ➡ Microscopic radio-emission approach permits to take into consideration the complete air shower geometry (shower front thickness, lateral distribution)
- ➡ Typical computation time, recent mac book pro, 10⁷ particles
 one event, one antenna ≈ 13 min

SELFAS2 at Astroparticle Physics DOI : 10.1016/j.astropartphys.2012.03.007

- ➡ Comparison with data give promising results:
 - interpretation of the radio core shift in the CODALEMA data Marin ICRC 2011 and currently under review in Astroparticle Physics
 - reproduction of the CODALEMA skymap events
 - good agreement on the individual deconvoluted events
- ➡ But difference between predicted amplitude and data are not fully understood yet
- ➡ Realistic air refractive index is now implemented in SELFAS2

Available freely at :

https://sites.google.com/site/selfascode

Tanks for attention....