

Surrounding effects and sensitivity of the CODALEMA experiment

Thibault Garçon SUBATECH

The CODALEMA experiments

The cabled arrays

Autonomous stations

Screening and surrounding effects

The CODALEMA antennas or any future large autonomous array may have to face various vicinities. What is their impact on the radiodetection?

Selected events: cosmic ray events in coincidence between particle detectors and at least three antennas 0.16 0.2 0.18 0.14 r normalized of events 0.0 0.0 0.0 \$ 0.16 6 0.14 0.12 0.12 0.1 0.1 West East Jaguno 0.06 0.08 Unuper North 0.02 0.02 0∟ 0 100 200 250 300 350 0^L 50 150 200 250 350 50 100 150 300 azimuth azimuth acceptance effect North

 No noticeable screening effect. Even a specially unfavourable vicinity seems to have no impact on the detection of cosmic rays.

East

Wes

Screening and surrounding effects

A sensitive detector

Despite various environments, CODALEMA obtains high quality results

Accurate LDF (well fitted by an exponential function) and arrival direction reconstruction

A sensitive detector

Unusual LDF can reveal a breakdown of one antenna

Autonomous detection

Autonomous station

- Goal : 100% autonomous system (trigger, power supply and acquisition), robust, compact, cheap
- Prototype station at Nancay : antenna, ADC, trigger , GPS, PC and control boards

Autonomous detection

 2 challenges: no self-induced triggering, no noise generation for other instruments of the Observatory (large and sensitive radio-telescopes)

Electromagnetic compatibility (EMC)

 Tests of noise produced by the autonomous station : anechoic chamber, radioheliograph array and radiotelescope measurements

- No noise radiated between 10 MHz and 4 GHz
- No self-induced triggering
- ⇒ Green light for installation @ Nançay

Sensitivity of the autonomous detection

Radio Frequency Identification by the stations:

- evaluation of the quality of the autonomous detection
 - mapping of noise sources

300

240

270East

determination of the optimal trigger threshold

Sensitivity of the autonomous detection

 Events observed in coincidence with the cabled array confirm the feasibility of autonomous radio-detection: ~10 coincidences in few weeks, one 2-fold coincidence few days after installation of the 3 antennas array.

Cabled array

Autonomous stations

Sensitivity of the autonomous detection

 Galactic background is the ultimate boundary for radio-detection: autonomous stations detect galactic background variations due to the Galaxy drift

Towards accurate physics?

Thanks to large sensitivity and precise knowledge of the antenna response, it becomes possible to reconstruct the cosmic ray frequency spectrum over a very wide band

Conclusion and outlook

- Screening effects (trees, other antennas) do not affect event detection statistics
- Antenna response is very well understood: simulations allows to understand and correct specific interference effects
- CODALEMA autonomous station is silent (no self-induced triggering, no outward noise)
- Sensitivity of the galactic background (ultimate noise) is reached. Large background variation observed during galactic transit.
- Well-known instrument: an accurate physics becomes possible, over a wide bandwidth (100 MHz)
- Ready for installation of large autonomous station arrays

