

The CODALEMA experiment

Olivier RAVEL

for the CODALEMA collaboration

SUBATECH, Nantes

The CODALEMA collaboration

8 French laboratories

1 experimental site at Nançay (Observatoire de Paris)

Radio Telescope

30/06/2010

Olivier RAVEL

Radio detection & CODALEMA goals

- To measure the radio transient associated to the atmospheric shower produced by high energetic cosmic rays
- To understand the radio production mechanisms
- To determine key observables sensitive to the shower features and the primary cosmic particle (Energy, Nature)
- To develop a detection technique competitive with conventional surface detectors in terms of :
 - Quality of data (sensitivity, resolution)
 - Efficiency and duty cycle
 - Simplicity, robustness and cost

30/06/2010

Olivier RAVEL

CODALEMA Stage I : main results

- Correlation of shower arrival directions

D. Ardouin et al. NIM A 2005

New evidence for radio-detection of cosmic ray air shower ~ 40 years after the pioneer period !

30/06/2010

Olivier RAVEL

A RENA CODALEMA stage I : main results

-First studies of electric field feature

-estimation of the shower core position by radio

-first lateral distribution

30/06/2010

Olivier RAVEL

East-West axis [m]

End of the stage I in 2005

-New design of antennas and extension of the antenna array

-Extension of the scintillator array => determination of the shower Energy

-New DAQ (12 bit ADC 1Gs/s)

CODALEMA active dipole

Data Acquisition:

- 12 bits ADC (MATAQ)
- Sampling: 1 Gs/s

See talks D.Charrier & T. Garçon

LNA CODALAMP (ASIC)

Low noise : sensitive to Galactic noise Wide bandwidth : 80 kHz à 230 MHz High dynamic, good linearity

> Dipole pattern EZNEC simulation

30/06/2010

Olivier RAVEL

CODALEMA stage 2 : CURRENT SETUP

Nançay Observatory

- 3 detector arrays:
- Antenna array
- -21 dipoles oriented EW
- 3 dipoles oriented NS
- Scintillator array:
 17 scintillators
 Trigger of the experiment Energy determination

Decametric array

18 groups of 8 Phased log-periodic antennas

Electric field map at small scale

30/06/2010

Olivier RAVEL

Scintillator array (Trigger)

17 stations covering a surface of $340 \times 340 \text{ m}^2$ with a pitch of 80 m

2 PMT per station (high and low gain) => Large dynamic 0.3-3000 VEM

Trigger rate 1 evt/ 7 mn

Energy threshold: 1.10¹⁵ eV

Trigger events : 5 central stations in coincidence

R&D LPSC Grenoble

2 different classes of events :

- Internal events: the maximum of signal is not on the edge of the array => good particle sampling => Correct estimate of the shower energy and the core position.

- External events: Particle density extrapolated outside the array : No confident estimate of the shower energy and the core position

=> Events exclude from the energy analysis

30/06/2010

Olivier RAVEL

Scintillator array : Performances

Provide important information on showers:

- Arrival direction : triangulation from the relative time of flight between the different stations

- Shower core position

- Energy (CIC method) 30% accuracy

ARENA

Radio detection efficiency

Radiodetection threshold ~ 5.10¹⁶ eV

Particles threshold 10¹⁵ eV

data taking time~ 3 yearsTrigger (SD events)169526Coincidences (SD and antennas)2030Coincidences (Internal)450

Efficiency

30/06/2010

ARENA

Olivier RAVEL

A RENA Shower arrival direction

- relative deficit of radio-detected events in the geomagnetic field axis area north/south asymmetry $N_{north}/N_{south} = 0.18$ Previous result with lower statistic $N_{north}/N_{south} = 0.17$ D.Ardouin et al. AP2009

30/06/2010

A model to understand the asymmetry

Hypothesis:

ARENA

- The electric field is proportional to the Lorentz force $E \alpha$ $|v \times B|$

- Charged particles in the shower are deflected by the geomagnetic field
- Electric field polarization in the direction of the Lorentz force :
 a linear polarization is assumed *E* // to v × B

-The number of count (ie the efficiency) depends on the electric field magnitude: a simple linear dependence is assumed

vxB Model : Predicted density map

COMPARISON : MODEL vs DATA (EW polarisation)

MODEL (vxB)_{EW}

DATA

At the first order, the vxB model fits correctly the data: notably the local maximum in the South direction ($\theta \sim 50^{\circ}$)

Deviations from the model could point to other emission process superimposed to the geomagnetic effect

30/06/2010

ARENA

Olivier RAVEL

Most of the 192 events are coming from East and West directions

30/06/2010

MODEL vs DATA COMPARISON

MODEL (vxB)_{NS}

At first order, good agreement with the model despite the low statistic Some clues for more : Significant asymmetry between E and W directions Differences in the contour maps (shape)

DATA

30/06/2010

Olivier RAVEL

Electric Field behaviors

Ground footprint

Symmetric ground patterns are observed despite the small extension of the array !

An upgraded array in both polarizations is needed : from two arms to 2D array to compare footprints with model predictions

See talks V. Marin, T Huegue

radio Lateral Distribution Function are fitted by decreasing exponential function in the shower coordinate system

 $\mathcal{E} = \mathcal{E}_0 \, \mathrm{e}^{-\mathrm{d}/\mathrm{do}}$

30/06/2010

ARENA

Olivier RAVEL

Most probable value ~ 160 m 80 % of the events with d_0 below 400 m d₀ increases with the zenith angle ~ 500 m for θ =50°

Electric field E vs Energy correlation

Event selection :

Multiplicity > 4 antennas $E > E_{Threshold} = 5.10^{16} \text{ eV}$

 $\varepsilon_0 \propto E^{\alpha}$ with $\alpha = 1.03$

The electric field is proportional to the primary energy.

 Γ a correction factor to take into account the **geomagnetic effect** on the electric field.

$$\Gamma = 1/|v \times B|_{FW} = 1/(-\sin\theta \cdot \cos\varphi \cdot \cos\theta - \cos\theta \sin\theta_B)$$

Calibration Factor C_f

$$\Gamma \varepsilon_0 = C_f E \text{ (eV)}$$

 $C_f = (2.85 \pm 0.2) .10^{-17} \mu V.m^{-1}.MHz^{-1}.eV^{-1}$

! Nançay Magnetic field taken as unit

30/06/2010

Olivier RAVEL

Conclusion

Geomagnetic effect

East/West asymmetry is well interpreted with the (v × B) model
 Good agreement for North/ South polarization

Energy correlation

We observe a strong correlation between the electric field and the shower energy

The fine calibration of the energy deduce from the radio array is in progress => Stand alone determination of the shower energy

ARENA

Perspectives

Future array equipped with new stations at Nançay 3 autonomous stations are in the current array for testing and debugging

Extension of the current array

- Higher antenna density at the center
- Extension at larger scales (~1 Km²). Ready in autumn

Installation of 5 stations for tests in Argentina. AERA Project (AUGER)

30/06/2010

Olivier RAVEL

Perspectives : Physics objectives

What is the geomagnetic mechanism involved in the emission process ?

- geosynchrotron model (Huege and Falcke, 2000)?
- transversal current model (Lasty, Scholten and Werner, 2005)?

one way : study of the field polarization => Antenna with EW & NS polar

- Field amplitude and primary energy correlation (partially done in the T.Saugrin Thesis, Univ Nantes 2008, publication under preparation)
- Determination of the primary CR nature ?

DAM result

30/06/2010